- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
13
- Author / Contributor
- Filter by Author / Creator
-
-
Messer, Tiffany L (3)
-
Agouridis, Carmen (2)
-
Barton, Christopher (2)
-
Miller, Daniel N (2)
-
Unrine, Jason (2)
-
Byers, Emily N (1)
-
Byers, Emily Nottingham (1)
-
Ford, William (1)
-
Messer, Tiffany L. (1)
-
Nottingham, Emily R. (1)
-
Sanderson, Wayne (1)
-
Sigler, Kyra (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
Sigler, Kyra; Messer, Tiffany L; Ford, William; Sanderson, Wayne (, Journal of Environmental Management)Free, publicly-accessible full text available December 1, 2025
-
Byers, Emily Nottingham; Messer, Tiffany L; Unrine, Jason; Barton, Christopher; Agouridis, Carmen; Miller, Daniel N (, Science of The Total Environment)Free, publicly-accessible full text available January 1, 2026
-
Nottingham, Emily R.; Messer, Tiffany L. (, Water)Wetland treatment systems are used extensively across the world to mitigate surface runoff. While wetland treatment for nitrogen mitigation has been comprehensively reviewed, the implications of common-use pesticides and antibiotics on nitrogen reduction remain relatively unreviewed. Therefore, this review seeks to comprehensively assess the removal of commonly used pesticides and antibiotics and their implications for nitrogen removal in wetland treatment systems receiving non-point source runoff from urban and agricultural landscapes. A total of 181 primary studies were identified spanning 37 countries. Most of the reviewed publications studied pesticides (n = 153) entering wetlands systems, while antibiotics (n = 29) had fewer publications. Even fewer publications reviewed the impact of influent mixtures on nitrogen removal processes in wetlands (n = 16). Removal efficiencies for antibiotics (35–100%), pesticides (−619–100%), and nitrate-nitrogen (−113–100%) varied widely across the studies, with pesticides and antibiotics impacting microbial communities, the presence and type of vegetation, timing, and hydrology in wetland ecosystems. However, implications for the nitrogen cycle were dependent on the specific emerging contaminant present. A significant knowledge gap remains in how wetland treatment systems are used to treat non-point source mixtures that contain nutrients, pesticides, and antibiotics, resulting in an unknown regarding nitrogen removal efficiency as runoff contaminant mixtures evolve.more » « less
An official website of the United States government
